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Abstract

A crack bridging model is presented for analysing the tensile stretching and bending of a cracked plate
with a patch bonded on one side\ accounting for the e}ect of out!of!plane bending induced by load!path
eccentricity inherent to one!sided repairs[ The model is formulated using both Kirchho}ÐPoisson plate
bending theory and Reissner|s shear deformation theory\ within the frameworks of geometrically linear and
nonlinear elasticity[ The bonded patch is represented as distributed springs bridging the crack faces[ The
springs have both tension and bending resistances ^ their sti}ness constants are determined from a one!
dimensional analysis for a single strap joint\ representative of the load transfer from the cracked plate to the
bonded patch[ The resulting coupled integral equations are solved using a Galerkin method\ and the results
are compared with three!dimensional _nite element solutions[ It is found that the formulation based on
Reissner|s plate theory provides better agreement with _nite element results than the classical plate theory[
Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a half crack length
cij elements of spring compliance matrix "i � 0\ 1#
E Young|s modulus
G strain energy release rate
h0 normalised crack opening displacement "u:a#
h1 normalised generalised crack face rotation displacement "0

5
utP:a#

I moment of inertia
ka spring sti}ness matrix "a � t\ b where t denotes tension and b denotes bending#
K stress intensity factor
K "K#

b bending stress intensity based on Kirchho}ÐPoisson plate theory
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K "R#
b bending stress intensity based on Reissner|s plate bending theory

M bending moment
N membrane force
S sti}ness ration "E?RtR:E?PtP#
t thickness
u crack face displacement "mid!plane#
z¹ position of the neutral plane of a plate[

Greek symbols
u crack face rotation
m shear modulus
n Poisson|s ratio
s9 prospective stress at the crack location
sm membrane stress
sb maximum bending stress[

Subscripts
P\ R\ A denoting parameters pertaining to the plate\ the reinforcement\ and the adhesive layer[

Superscripts
� parameters pertaining to the remote loading[

0[ Introduction

With the increasing use of bonded repair techniques for repairing cracks and other damages in
primary airframe structures\ the design and evaluation of bonded repairs is becoming a major
concern to meet certi_cation requirements of damage tolerant repairs to critical structures "Baker\
0886#[ A critical repair is de_ned as one in which the residual strength of the unrepaired component
would be lower than the design ultimate or\ even worse\ the design limit load[ To certify critical
repairs to primary structures we need to be able to demonstrate by analysis and:or test that the
repair can meet the residual strength and damage tolerance requirements[ To ensure adequate
damage tolerance of the repaired structure\ it is essential to determine the reduction in the stress
intensity factor after repair so as to ensure that "i# the residual strength has been restored to an
acceptable level\ and "ii# the growth rate of the crack under fatigue condition is su.ciently slow
to ensure an acceptable residual life\ or inspection interval[

A bonded repair\ which involves adhesively bonding a composite patch to a cracked or damaged
structure\ may fail in a number of modes\ such as patch failure\ failure of the adhesive layer\ failure
of the plate outside the repair region due to stress elevation near the termination of the patches\
or insu.cient reduction in the stress intensity factor of the crack thus leading to continuous crack
growth[ Over the past two decades analytical procedures "Erdogan and Arin\ 0861 ^ Keer et al[\
0865 ^ Rose\ 0870\ 0871\ 0877# have been developed to address these issues\ assuming that the
bonded structure is under tension only and there is no secondary bending[ In particular\ the simple\
closed form solution derived by Rose "0870\ 0871\ 0877# for the limiting value of the stress intensity
factor has played a key role in the development of bonded repair methodology\ which has been
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supported by extensive laboratory testing and validation "Baker and Jones\ 0877 ^ Baker 0882 ^
Rose et al[\ 0884#[ More recently it has been noted that the original expressions derived by Rose
for two!sided repairs need to be modi_ed to account for the plane strain state along the crack
length direction "Wang and Rose\ 0887#[

Since most often only one face of a structure to be repaired is accessible and sometimes only
one side of a structure is allowed to be patched for other reasons\ one!sided repairs are often
adopted in practical applications[ In this case if the structure is well supported against out!of!
plane de~ection\ for example\ by sti}eners attached to one side of the structure\ only the tensile
stretching of the crack needs to considered\ allowing the problem to be solved using relatively
simple methods "Erdogan and Arin\ 0861 ^ Keer et al[\ 0865 ^ Rose\ 0870\ 0871 ^ 0876#[ However\
there are many cases where the structures to be repaired are not restrained from out!of!plane
de~ection\ and the bonding of a single patch on one surface will cause the load!path to become
eccentric\ resulting in secondary bending near the crack region "Ratwani\ 0868 ^ Jones\ 0872 ^ Rose\
0877 ^ Arendt and Sun\ 0883 ^ Wang et al[\ 0887#[ Nevertheless\ it has been shown that the total
strain energy release rate and the "root!mean!square# stress intensity factor of a one!sided repaired
crack will asymptote to\ but never exceeds\ a limiting value as the crack length increases "Callinan
et al[\ 0886 ^ Wang et al[\ 0887#[ Based on a geometrically linear analysis\ Wang et al[ "0887# have
derived an upper bound solution of the strain energy release rate\ which has been shown to compare
well with three!dimensional _nite element results "Callinan et al[\ 0886#[

Previous work has also highlighted two major di.culties in predicting theoretically the
e.ciencies of unsupported one!sided repairs[ First\ although the total strain energy release rate
for a semi!in_nite crack can be determined by an energy method\ this method alone is insu.cient
to partition the total strain energy release rate into a tension and bending component "Wang and
Rose\ 0886#[ Consequently the exact values of the membrane and bending stress intensity factors
are unknown\ nor is the maximum stress intensity factor\ which is probably the most important
parameter dictating the residual strength and potential fatigue crack growth rate[ Secondly\ to
quantify the e}ect of crack length on the repair e.ciency\ a more detailed stress analysis is called
for to determine the stress intensity factors for varying crack lengths\ which is of great importance
when either debonding or crack growth is the rate!determining process[

The main purpose of this article is to present an analytical method for the combined tensile
stretching and bending of one!sided repairs[ The patch is replaced by distributed springs bridging
the crack faces[ The springs have tension and bending resistances[ Both Kirchho}ÐPoisson plate
bending theory and Reissner|s shear deformation theory will be employed\ in conjunction with the
generalised plane stress theory for tensile stretching\ to formulate the governing equations[ To
account for the geometrically non!linear deformation of a one!sided repair subjected to tensile
loads\ a hybrid method is proposed in which the prospective stresses along the crack path are
analysed using geometrically non!linear plate theories\ whereas the perturbation problem is solved
within the framework of geometrically linear elasticity[ The resulting solutions are shown to
provide upper bounds to all the fracture parameters[

1[ Basic formulation

Referring to Fig[ 0\ the problem to be considered is a cracked plate repaired by a patch adhesively
bonded on one side[ The plate\ which has a thickness of tP\ contains a through crack of length 1a[
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Fig[ 0[ "a# A cracked plate reinforced by a patch attached to one surface[ "b# Cross!section in the yÐz plane "−a ³ x ³ a#[
"c# Cross section in the xÐz plane "y � 9#[
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The thickness of the patch and the adhesive layer are respectively tR and tA[ The cross!sections in
the yÐz and xÐz planes are depicted in Fig 0"b# and "c#[ The Young|s modulus and the Poisson|s
ratio of each individual layer are denoted as E and n ^ here and in the following subscripts P\ R\
and A will be used to distinguish properties pertaining\ respectively\ to the plate\ the reinforcement
and the adhesive layer[

At remote distance from the repaired region\ the plate is subjected to a combined tension in the
y!direction and a pure bending about the x!axis[ The boundary conditions for the problem are
that the crack surfaces are stress free and there is a prescribed stress system at the in_nity so that

syy : s�\ Mxx : M� as zx1¦y1 : � "−tP:1 ³ z ³ tP:1# "0a#

and

syy � txy � 9 "=x= ³ a\ y � 9\ −tP:1 ³ z ³ tP:1# "0b#

By using the superposition principle it is easy to demonstrate that the problem depicted in Fig[
0"a# is equivalent to solving the following perturbation problem as depicted in Fig[ 1\

plate ]

F

G

j

J

G

f

syy � −s9"z# "=x= ³ a\ y � 9\ −tP:1 ¾ z ³ tP:1#

uy �
duy

dz
� 9 "=x= − a\ y � 9\ −tP:1 ¾ z ³ tP:1#

sxx : 9\ syy : 9\ txy : 9 "zx1¦y1 : �\ −tP:1 ¾ z ³ tP:1#

"1a#

patch uy �
duy

dz
� 9 "=x= ³ �\ y � 9\ tP:1¦tA ¾ z ³ tP:1¦tA¦tR# "1b#

where s9"z# is the stress distribution along the prospective crack path in the uncracked structure
"with reinforcement#\ which will be determined in Section 2[

By treating the cracked plate and the patch as thin plates\ the stress distribution on the crack
faces can be considered as the superposition of a membrane force N9 and a bending moment M9\
with the stress distribution being given by s9"z# � −"N9:tP−01M9z:t

2
Pq#[ Without the bonded

patch\ it is obvious that N � N� and M9 � M�[ After patching\ however\ the stresses along the
prospective crack path are no longer equal to those prior to the application of reinforcement[

Fig[ 1[ Perturbation problem of repaired cracked plate subjected to tension and bending[
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Furthermore\ as a result of bonding a patch on one side only\ the repaired structure now experiences
a load!path eccentricity\ leading to geometrically non!linear deformation[ Consequently\ the stress
s9"z#:s� would depend on the applied load levels[ In the present work\ the stress distribution s9"z#
in the plate along the prospective crack path will be _rst determined in Section 2\ within the
geometrically linear and geometrically non!linear elasticity frameworks[ Then the perturbation
problem of a crack pressurised by a combination of membrane force and bending moment is
solved using a crack bridging model as detailed in Section 4\ within the framework of geometrically
linear elasticity[ Then a hybrid method is proposed in Section 6 to obtain an upper!bound solution
to the tension and bending stress intensity factors[

If we denote the membrane force and the bending moment acting on the prospective crack path
as N9 and M9\ and denote the crack surface displacement and rotation as u and u "all referred to
the mid!plane of the cracked plate#[ The basic idea underlying the crack bridging model to be
described below is that "i# by representing the e}ect of the reinforcement by an in_nite number of
tension and bending springs bridging the crack faces\ and "ii# by deriving the relationship between
"N9\ M9# and "u\ u# from an analysis of a single strap joint in plane strain "Fig[ 0"b##\ one can
model the problem depicted in Fig[ 1 as a plate containing a through crack reinforced by distributed
tension and bending springs ^ see Fig[ 2[ Thus\ a complicated three!dimensional problem is reduced
to a two!dimensional problem of a bridged crack\ and a one!dimensional problem to determine
the crack bridging traction law\ which will be presented in Section 3[ The resulting hyper!singular
integral equations are then solved using a Galerkin method\ which is detailed in Section 5[

To a certain degree the proposed crack bridging model is similar in spirit to the line spring
model developed by Rice and Levy "0861# for plates with part!through cracks\ where the net
ligament was modelled as tension and bending springs\ and the spring compliance matrix was

Fig[ 2[ A plate with a through crack reinforced with tension and bending springs[
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determined by making use of the known solution of a strip with an edge crack subjected to remote
tension and bending[ However\ one distinct di}erence between the present crack bridging method
and the line spring model is that in the line spring model a plate with part!through crack is modelled
as a plate containing a through crack\ with the crack being reinforced with tension and bending
springs[ In the present case\ however\ the reinforcement is removed and replaced by tension and
bending springs bridging the crack faces\ assuming that the stress di}usion between the cracked
plate and the reinforcement occurs over a negligible distance hence the patch can be removed and
replaced by distributed springs having tension and bending resistance[ Such an approach has been
"Wang and Rose\ 0887# shown to reproduce the solution of an exact formulation based on elasticity
theory by Keer et al[ "0865#\ for symmetric repairs\ when the characteristic distance over which
the load transfer occurs is far smaller than the characteristic crack length[

Another major di}erence between the present crack bridging model and the line spring method
for part!through crack problem is that the crack front in the present case is perpendicular to the
plate surface\ and hence the {ligament| ahead the crack front would be in_nite rather than _nite as
in the part!through crack case[ Therefore the method of determining the compliance matrix used
in the line spring model is not applicable to bonded repairs[

2[ Prospective stress distribution

Let us assume that the reinforcement spans across the entire width of the plate\ so that the
stresses in the reinforcement and the plate are uniform in the x!direction everywhere within the
reinforced portion\ and there is no debonding between the plate and the reinforcement[ The o}set
in the load!path of the membrane force as indicated in Fig[ 3"a# will induce a bending moment\
which will cause the neutral plane of the reinforced portion to move towards the load!path "see
Fig[ 3"b##\ and this will in turn relieve the bending moment[ Therefore strictly speaking the
geometrically nonlinear deformation behaviour must be taken into account[ Nevertheless\ a geo!
metrically linear solution will provide a conservative estimate of the stresses in the plate and the
reinforcement[ In the present study\ both geometrically linear and nonlinear solutions will be
derived which would provide an upper and lower bound to the actual stress distribution[

2[0[ Geometrically linear solution

Assuming that the reinforcement is far greater than the shear stress transfer length\ we can
neglect the in~uence of the outer edge of the reinforcement and treat the reinforced region as a
composite plate with a rigid bondline[ The stress distribution in the plate and the reinforcement
can be determined using the well!known composite plate theory "Gere and Timoshenko\ 0876#[
The position of the neutral plane of the composite plate consisting of the base plate and the rigidly!
bonded reinforcement is denoted by z¹\ referring to Fig[ 3\

z¹ �
S"tP¦tR#
1"0¦S#

"2#

where S denotes the sti}ness ratio\ S � E?RtR:E?PtP\ and E? refers to the plane!strain Young|s
modulus "E? � E:"0−n1##[ The moment of inertial of the reinforced region It\ is
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Fig[ 3[ Prospective stress distribution in the plate ] "a# geometrically linear analysis ^ "b# geometrically non!linear analysis ^
and "c# deformed shape of a single strap joint[

It � IP¦nIR "3#

where

IP � t2P:01¦tPz¹
1\ IR � t2R:01¦"tP¦tR−1z¹#1:3 and n � E?R:E?P

The stress distribution in the patched plate is assumed to be linear in the thickness direction\ so
that it can be speci_ed in terms of a membrane force N9 and a bending moment M9 per unit length
in the x!direction\ which act on the plane y � 9 containing the crack "see Wang et al[\ 0887\ noting
the use of di}erent coordinate system#[ This implies that the prospective stress is given by

s9"z# �
s�

0¦S
¦

ðs�tPz¹¦M�Ł"z¹−z#
It

� sm−sb

1z
tP

"−tP:1 ³ z ³ tP:1# "4#

where sm denotes the membrane stress and sb the maximum bending stress "negative on the inner
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surface close to the bondline#[ Consequently the membrane force and bending moment can be
expressed as

N9 � g
tP:1

−tP:1

syy"y � 9\ z# dz 0
s�tP
0¦S

¦
s�t1Pz¹

1¦M�tPz¹
It

"5#

M9 � −g
tP:1

−tP:1

syy"y � 9\ z#z dz 0 ðs�tPz¹¦M�Ł
t2P

01It

"6#

It is thus clear due to the load!path o}set\ there exists a non!zero prospective bending moment
even when the plate is subjected to only a remote tension[

2[1[ Geometrically non!linear solution

Since the membrane force exerts a restoring force to move the neutral plane of the reinforced
region towards the load line\ as illustrated in Fig[ 3"b#\ the actual bending moment will be less
than determined on the basis of geometrically linear analysis[ This problem has been treated by
Rose "0877# for the case of _nite reinforcement\ and his results suggested that for in_nite overlap\
the neutral plane of the reinforced region will align exactly with the load line for non!vanishing
remote tensile load[ This means that if the structure is subjected to a remote tension only\ the
stresses in the plate and the reinforcement will be uniform in the z!direction\ at y � 9[ Thus\ for
this limiting case of an in_nite overlap\ the prospective membrane force N9 and the bending
moment M9 can be determined from eqns "5# and "6# by equating the neutral plane o}set z¹ to zero\
i[e[\

N9 �
s�tP
0¦S

¦
M�tPz¹

It

"7#

M9 � M� t2P
01It

"8#

As discussed earlier\ the problem to be solved can be reduced to a perturbation problem where the
above determined membrane force and bending moment are applied to the crack faces[ It should
be pointed out that in the case when the plate is subjected to remote tension only\ although the
prospective stress distribution through the plate thickness is uniform\ the unrestricted out!of!plane
de~ection near the crack region will result in a bending stress intensity factor along the crack front
as well as a membrane stress intensity factor ^ further discussion will be presented later[

3[ Determination of spring constants

In order to formulate a crack bridging model\ it is essential to determine _rst the spring constants[
As depicted in Fig[ 4"a#\ let us denote the crack face displacement and rotation as u and u\ in
relation to the mid!plane of the plate\ caused by the application of a membrane force N9 and
bending moment M9[ The relationship between "N9\ M9# and "u\ u# can be determined by analysing
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Fig[ 4[ "a# Single strap joint representing one!sided repairs subjected to membrane tension and bending moment\ and
"b# notations and boundary conditions[

the single strap joint under plane strain conditions ^ details are presented in Appendix A[ When
expressed in a matrix form\ we have

6
u

u7� $
c00 c01

c10 c11% 6
N9

M97 "09#

where cij are given in Appendix A[ From equation "09# on can obtain the sti}ness matrix\

6
N9

M97� $
dtt dtb

dbt dbb% 6
u

u7 "00#

where

dtt � c11:D\ dtb � −c10:D

dbt � −c01:D\ dbb � c00:D

D � c00c11−c01c10 "01#

To facilitate the following analysis it is advantageous to express the spring traction law in terms
of the generalized displacements corresponding to the membrane stress sm "�N9:tP# and the
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maximum bending stress sb "�5M9:t
1
P#[ Since the total strain energy release rate per unit thickness

is given by

G � smu¦0
5
sbutP "02#

it is clear that the associated generalised placements are\ respectively\ u and utP:5[ From eqn "00#
we can express the relationship between "sm\ sb# and "u\ utP:5# as

6
sm

sb7� EP $
ktt ktb

kbt kbb% 6
u

0
5
utP7 "03#

where kij represent spring constants which have a unit of length−0\

ktt �
0

EPtP
dtt 0

c11

EPtPD
ktb �

5

EPt
1
P

dtb 0 −
5c10

EPt
1
PD

"04a#

kbt �
5

EPt
1
P

dbt 0 −
5c01

EPt
1
PD

kbb �
25

EPt
2
P

dbb 0
25c00

EPt
2
PD

"04b#

According to elastic reciprocity we should have ktb � kbt[ However\ due to the approximate nature
of the plate theory employed in the present work the cross terms c01 and c10 as given in Appendix
A are not exactly identical but the numerical di}erence is relatively small[ It is also possible to
symmetrise the spring sti}ness matrix is required\

k�tb � k�bt �
ktb¦kbt

1
"05#

which is the only permissible symmetrisation to ensure the equivalence in the total energy release
rate[

4[ Crack bridging model

The basic idea of a crack bridging model is to model the patching problem as a single plate with
a through crack reinforced by distributed tension and bending springs sprung over the crack faces\
where the spring constant matrix has already been obtained in Section 3[ The crack bridging
problem depicted in Fig[ 2 is similar to the {line spring| model introduced by Rice and Levy "0861#
to deal with part!through surface cracks in homogeneous plates[ Here the tension and bending
_elds are coupled by the boundary condition along the line of discontinuity\ which relate the crack
face displacement u and rotation u to the membrane force N9 and the bending moment M9[ Noting
eqn "00#\ the boundary conditions along y � 9 can be expressed in terms of the yet unknown
displacement and rotation\

Nyy"x\ 9¦# � −N9¦dttu"x#¦dtbu"x# "−a ³ x ³ a# "06a#

Mxx"x\ 9¦# � −M9¦dbtu"x#¦dbbu"x# "−a ³ x ³ a# "06b#

Making use of the solution of the in!plane displacement of a bridged crack under tension "see
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Joseph and Erdogan\ 0876\ 0878 ^ Nemat!Nasser and Hori\ 0876#\ the unknown crack face dis!
placement "one half of the total crack opening displacement# can be expressed as\

EPtP
1p g

a

−a

u"j#

"x−j#1
dj � Nyy"x0\ 9¦# 0 −N9¦dttu"x#¦dtbu"x# "07#

The integral in the above equation is interpreted as a Hadamard _nite part "Hadamard\ 0841#\
which can be viewed as the derivative of a Cauchy principal value integral[ Despite the higher
order of singularity in the integrand\ the present formulation has many advantages over that
based on the derivative of the displacement\ or dislocation density\ mainly because the unknown
displacement function is bounded unlike the density function which is singular near the crack tip[
Numerical methods and convergence for this class of strongly singular integral equations have
been investigated by a number of authors "Frenkel\ 0872 ^ Golberg\ 0872\ 0874 ^ Kaya and Erdogan\
0876 ^ Joseph and Erdogan\ 0876 ^ Ervin and Stephan\ 0881# and it has been found that the hyper!
singular integral equations can be e.ciently solved by using either Galerkin|s method or collocation
methods[

Since the cross terms dtb and dbt are non!zero\ the membrane resistance of the distributed springs
is dependent on not only the crack face displacement but also the crack face rotation[ Therefore
the tensile stretching of the crack is coupled with the bending\ and vice versa[ To quantify the
bending deformation of a plate\ we need to adopt a plate theory[ In this regard\ Kirchho}Ð
Poisson plate bending theory "Timoshenko and Woinowsky!Krieger\ 0847# and Reissner|s shear
deformation theory "Reissner\ 0836# are probably the most widely used plate theories[ Due to the
inability of Kirchho}ÐPoisson plate theory to completely satisfy stress free boundary conditions
along the crack face\ it leads to not only misleading stress intensity factor but also incorrect angular
distribution of the asymptotic stress state near the crack tip "Williams\ 0850#[ This problem has
led to the use of Reissner|s plate theory "Knowles and Wang\ 0859 ^ Hartranft and Sih\ 0857 ^
Wang\ 0857# for describing the crack tip _elds\ leaving aside the uncertainty of the perturbed stress
state on the plate surface "Sih\ 0860#[

Due to the use of higher order di}erential equations\ the analysis based on Reissner|s plate
theory is considerably more complicated than that based on the classical plate theory[ For a single
plate containing a long through crack "a:tP : �#\ the expenses of using a much more complicated
Reissner|s plate theory may overweigh the gain of improved accuracy[ This is because the classical
plate theory would correctly predict the strain energy release rate in the long crack limit\ identical
to that obtained from Reissner|s plate theory "Hui and Zehnder\ 0882#[ Hence there exists a
universal relationship between the stress intensity factor from Reissner|s plate theory and that
from the classical plate theory\

K "R#
b �X

0¦nP

2¦nP

K "K#
b "08#

where K "R#
b and K "K#

b denote\ respectively\ the bending stress intensity factors determined from
Reissner|s plate theory and Kirchho}ÐPoisson plate theory "no crack closure in the compression
side is assumed ^ this issue will be dealt with separately in another article#[ It is\ however\ not clear
whether the same relationship still holds for a cracked plate repaired on one side[ To clarify this
point\ both plate theories will be employed in the following analyses[
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4[0[ KirchhoffÐPoisson plate bendin` theory

Referring to equations "06# and making use of the solutions for a single plate with a through
crack based on Kirchho}ÐPoisson plate theory "Joseph and Erdogan\ 0876#\ the following hyper!
singular integral equation can be obtained\

2¦nP

0¦nP

EPt
2
P

13p g
a

−a

u"t#

"x−j#1
dj � Mxx"x\ 9¦# 0 −M9¦dbtu"x#¦dbbu"x# "19#

which\ together with eqn "07#\ furnishes a set of coupled integral equations[
For the purpose of parametric investigation\ we introduce the following non!dimensional vari!

ables\

h0"x# � u"x#:a "10#

h1"x# � 0
5
utP:a[ "11#

The integral eqns "07#\ "19# can thus be normalised to become

−
0
1p g

0

−0

h0"h#

"r−h#1
dh¦"ktta#h0"r#¦"ktba#h1"r# �

sm

EP

"12a#

−
2¦nP

0¦nP

2
1p g

0

−0

h1"h#

"r−h#1
dh¦"kbta#h0"r#¦"kbba#h1"r# �

sb

EP

"12b#

where r � x:a\ h � j:a[
The coupled integral equations "12# have no closed form solutions[ However\ their solutions

can be readily obtained numerically using a Galerkin method ] expand the unknown functions in
terms of Chebyshev polynomials and then determine the coe.cients numerically\ similar to the
approach used by Nemat!Nasser and Hori "0876# for the case of tension springs only[ Details will
be shown in the next section[ It may be shown that the following functions are also bounded
everywhere within "−0\ 0#\

hÞ0\1"r# �
h0\1"r#

z0−r1
"13#

Furthermore\ the left!hand sides in eqns "12# give the membrane and bending stresses outside the
cut "−0\ 0#\ which are singular near r : 0¦ or r : −0−[ By using the following asymptotic
behaviour for r : 0¦\

lim
r:0¦

0
1p g

0

−0

f"h#z0−h1

"r−h#1
dh � lim

r:0¦

f"0#

1z1"r−0#
"14#

where f denotes any bounded function within "−0\ 0#[ It is easily shown that the membrane stress
intensity factor is given by

Km � lim
r:0¦

z1pa"r−0#syy"r\ 9# �
EPzpa

1
hÞ0"0# "15#
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Similarly the bending stress intensity factors based on Kirchho}ÐPoisson plate theory "using stress
de_nition# is\

K "K#
b �

2¦nP

0¦nP

2EPzpa
1

h¹1"0#[ "16#

It should be noted that when the Kirchho}ÐPoisson plate theory is employed\ the displacement
based de_nition will lead to an answer di}erent from eqn "16#[ However\ since Kirchho}ÐPoisson
plate theory is a stress based formulation\ the stress de_nition of the bending stress intensity factor
"no crack closure is considered# is perhaps the only valid de_nition and displacement based
de_nition will not be discussed further[

4[1[ Reissner|s plate theory

Similarly\ the crack face rotation for a bridged crack subjected to bending is given by "Joseph
and Erdogan\ 0878#\

EPt
2
P

13p g
a

−a

u"j#

"x−j#1
dj¦

4
0¦nP

EPtP
13p g

a

−a

L"s#u"j# dj � Mxx"x\ 9¦# "17#

where

s � z09=x−j=:tP "18a#

L"s# � −
37

s3
¦

3

s1
¦3ðK1"s#−K9"s#Ł¦

13

s1
K1"s# "18b#

and K9 and K1 are the modi_ed Bessel functions of the second kind[ It can be shown "Joseph and
Erdogan\ 0876# that L"s# is a Fredholm kernel with only a logarithmic singularity near s � 9
"proof is given in Appendix B\ with corrections to reference Joseph and Erdogan "0876##[

By adopting the normalisation introduced earlier\ the integral equations "07#\ "17# can be
normalised to become\

−
0
1p g

0

−0

h0"h#

"r−h#1
dh¦"ktta#h0"r#¦"ktba#h1"r# �

sm

EP

"29a#

−
2
1p g

0

−0

h1"h#

"r−h#1
dh−

04
"0¦nP#1p 0

a
tP1

1

g
0

−0

L 0z09
a
tP

=r−h=1 h1"h# dh

¦"kbta#h0"r#¦"kbba#h1"r# �
sb

EP

"29b#

while the membrane stress intensity factor is still given by eqn "15#\ the bending stress intensity
factor can be derived either using stress based de_nition or displacement based de_nition "which
will yield identical answer#\



C[H[ Wan`\ L[R[F[ Rose:International Journal of Solids and Structures 25 "0888# 0874Ð1903 0888

K "R#
b �

2EPzpa
1

h¹1"0# "20#

Since Reissner|s plate theory yields the same angular distribution of the asymptotic stress state as
given by elasticity theory\ we can de_ne a stress intensity factor at coordinate z through the plate
thickness\

K"z# � Km−
1z
tP

Kb

whereas this is not the case for Kirchho}ÐPoisson plate theory[

5[ Numerical methods

An e}ective way of solving the hyper!singular equations\ numerically\ is provided by expanding
the unknowns using Chebyshev polynomials of the second kind\ Ui ]

h0"r# � W"r#h¹0"r# 3 W"r# s
N

i�9

fiUi"r# "21#

h1"r# � W"r#h¹1"r# 3 W"r# s
N

i�9

`iUi"r# "22#

where W"r# � z0−r1\ fi and `i "i � 9\ 0\ 1\ [ [ [ \ N# are coe.cients yet to be determined[ Here N is
selected to be su.ciently large to ensure convergence within an acceptable accuracy[ The method
is e}ective because\ with this expansion\ the hyper!singular integral can be evaluated analytically\
e[g[\

g
0

−0

W"r#Ui"r# dr

"x−r#1
� −p"i¦0#Ui"x# "−0 ³ x ³ 0# "23#

One can now develop a Galerkin!type method to determine the unknown coe.cients " fi and `i#[

5[0[ Classical plate theory

Making use of eqn "23#\ eqns "12# can be written as

s
N

i�9

"i¦0#
1

fiUi"r#¦W"r#"ktta# s
N

i�9

fiUi"r#¦W"r#"ktba# s
N

i�9

`iUi"r# �
sm

EP

"24a#

2"2¦nP#
0¦nP

s
N

i�9

"i¦0#
1

`iUi"r#¦W"r#"ktba# s
N

i�9

fiUi"r#¦W"r#"kbba# s
N

i�9

`iUi"r# �
sb

EP

"24b#

Be exploiting the discrete orthogonality of Chebyshev polynomials of the second kind\ these
equations can be rewritten as\ after multiplying eqns "24# with W"r#Uj"r# then integrating from
−0 to 0\
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Aijfj¦Bij`j �
p

1
s9

EP

d9j "i\ j � 9\ 0\ 1\ [ [ [ \ N# "25a#

Cijfj¦Dij`j �
p

1
sb

EP

d9j "i\ j � 9\ 0\ 1\ [ [ [ \ N# "25b#

where

Aij �
0
3
p"i¦0#dij¦"ktta#gij "26a#

Bij �"ktba#gij "26b#

Cij �"kbta#gij "26c#

Dij �
2"2¦nP#p
3"0¦nP#

"i¦0#dij¦"kbba#gij "26d#

gij � g
0

−0

ðW"r#Ł1Ui"r#Uj"r# dr

� 8
9 i¦j is odd

3"i¦0#" j¦0#
"i¦j¦2#"i¦j¦0#"i−j¦0#" j−i¦0#

i¦j is even
"26e#

dij being the Kronecker delta[ The proof for the explicit expression of gij is given in Appendix C[

5[1[ Reissner|s plate theory

In a similar manner as described in the previous section\ eqn "29b# can be expressed as

2
1

s
N

i�9

"i¦0#`iUi"r#−
04

"0¦nP#1p 0
a
tP1

1

s
N

i�9

`iLÞi"r#

¦W"r#"ktba# s
N

i�9

fiUi"r#¦W"r#"kbba# s
N

i�9

`iUi"r# �
sb

EP

"27#

where

LÞi"r# � g
0

−0

L0z09
a
tP

=r−h=1W"h#Ui"h# dh "28#

Multiplying eqn "27# with W"r#Uj"r# then integrating from −0 to 0\ one obtains\ noting that the
tensile stretching equation is identical to the _rst of eqn "25#\

Aijfj¦Bij`j �
p

1
s9

EP

d9j "i\ j � 9\ 0\ 1\ [ [ [ \ N# "39a#
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Cijfj¦Fij`j �
p

1
sb

EP

d9j "i\ j � 9\ 0\ 1\ [ [ [ \ N# "39b#

where

Fij �
2
3

p"i¦0#dij¦"kbba#gij−
04

"0¦nP#1p 0
a
tP1

1

Lij "30a#

Lij � g
0

−0

� LÞi"r#W"r#Uj"r# dr 0 g
0

−0 g
0

−0

L"z09=r−h=a:tP#W"h#W"r#Ui"h#Uj"r# dh dr

"30b#

where Aij\ Bij\ Cij and gij are given by eqns "26#[ Since the kernel L"s# has a logarithm singularity\
the above double integration presents a major time!consuming operation for the numerical analysis[
One way to attenuate this di.culty is to separate the logarithm singularity\ which can be calculated
in closed!form "Joseph and Erdogan\ 0876#\

Lij � g
0

−0 g
0

−0

ðL"z09=r−h=a:tP#−ln =r−h=¦ln =r−h=ŁW"h#W"r#Ui"h#Uj"r# dh dr

� g
0

−0 g
0

−0

ðL"z09=r−h=a:tP#−ln =r−h=ŁW"h#W"r#Ui"h#Uj"r# dh dr¦aij "31#

where

aij �

F

G

G

G

G

G

G

g

G

G

G

G

G

G

f

−
p1

05
ð0¦3 ln 1Ł i� j� 0

−
p1

7 0
0

j−0
¦

0
j¦01 i� j� 0

p1

7" j−0#
j� i¦1

p1

" jj¦0#
j� i� 1

9 otherwise

"32#

detailed derivations are given in Appendix D[ The remaining integrand in eqn "31# is a smooth
function everywhere within the integration interval\ thus allowing the integral to be evaluated
using simple quadrature rules[

The coupled linear set of eqns "25# or "39# can be readily solved for the unknown coe.cients fi
and `i\ from which the membrane and bending stress intensity factors can then be determined via
eqns "15#\ "16#\"20#\ noting
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h¹0"0# � s
N

i�9

"0¦i# fi

h¹ "0# � s
N

i�9

"0¦i#`i

Table 0 illustrates the convergence of the solutions for intermediate and long crack cases\ based
on Kirchho}ÐPoisson plate theory[ The Reissner|s plate theory formulation exhibits a similar
convergence[ In this table the reduction in the stress intensity factor as a result of repair is calculated
for di}erent numbers of leading terms in the expansion in terms of the Chebyshev polynomials[
From Table 0 it can be seen that as the crack length increases more terms are required to achieve
the same degree of accuracy[ For instance\ for Ktta � 0[9\ a total of 21 terms is su.cient to achieve
an accuracy better than 9[0)\ whereas 53 terms are needed to achieve the same accuracy for
ktta � 09[9[ The main reason for this is due to the boundary layer e}ect in the crack face opening
displacement ] as the sti}ness of the bridging springs increases\ the crack!opening displacement
becomes essentially constant over the entire crack length\ except in the vicinity of the crack tips\
where the crack!opening displacement sharply decreases to zero "Rose\ 0876 ^ Nemat!Nasser and
Hori\ 0876#[ However\ as will be shown later\ the stress intensity factors obtained for a normalised

Table 0
Convergence of solution using Kirchho}ÐPoisson plate theory

N Km:smzpa Di}erence ")# K "K#
b :sbzpa Di}erence ")#

ktt � 0[9
1 9[619072 2[985 0[5785 3[812
3 9[621960 0[386 0[54401 1[670
7 9[628085 9[427 0[51582 0[929

05 9[631913 9[046 0[50493 9[183
21 9[631774 9[931 0[50044 9[965
53 9[632012 9[9984 0[50950 9[906

017 9[632075 9[9900 0[50926 9[991
145 9[632083 * 0[50922 *

ktta � 09
1 9[290696 −05[431 9[720814 −4[306
3 9[218542 −7[7001 9[789309 0[1219
7 9[236587 −2[7085 9[895359 2[9456

05 9[245563 −0[2255 9[893913 0[5317
21 9[259169 −9[2308 9[772447 9[3418
53 9[250105 −9[9791 9[779300 9[9841

017 9[250361 −9[9983 9[768563 9[9003
145 9[250495 * 9[768463 *

Notes ] 0[ kbt:ktt � −2[3633\ kbb:ktt � 07[4152[ 1[ The di}erence is measured relative to the value for N � 145 and is
used as a measure of convergence of the series[
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crack length of ktta � 09[9 is su.ciently close to the long crack limit\ ktta : �\ so that no further
calculations involving much higher order of expansion is necessary[

6[ Results and discussion

For illustration we shall consider the case of a typical bonded repair to highlight the important
rami_cations of repairing unsupported structures using existing design methodology\ which has
been developed for symmetric repairs or well!supported one!sided repairs[ The dimensions and
material properties of the cracked plate\ reinforcement and the adhesive layer are summarised in
Table 1\ which represents a typical repair that has been extensively used in practical applications
"Baker and Jones\ 0877#[ Two di}erent loading cases will be considered separately ] remote tension
and remote bending[ In the case of remote tension\ the e}ect of geometrically non!linear defor!
mation will be analysed used a hybrid method[

6[0[ Remote tension ] `eometrically linear analysis

The plate is assumed to be subjected to a uniform tension\ s�\ remotely[ According to eqns "5#
and "6#\ the prospective membrane and the maximum bending stresses acting on the crack faces
are\ respectively\

sm � 0
0

0¦S
¦

tPz¹
1

It 1 s� "33#

sb �
t1Pz¹
1It

s� "34#

With the material properties and dimensions given in Table 1\ the coupled eqns "25# and "39#\
representing Kirchho}ÐPoisson plate theory and Reissner|s plate theory\ are solved numerically[
The results are plotted in Fig[ 5[ It is clear that the formulation based Kirchho}ÐPoisson plate
theory signi_cantly over!predicts the bending stress intensity factor as compared to Reissner|s
plate theory\ while the membrane stress intensity factors appear to be well predicted[ Even when
the Kirchho}ÐPoisson bending stress intensity factor is converted to an equivalent Reissner
bending stress intensity factor using eqn "08#\ Kirchho}ÐPoisson plate theory prediction still

Table 1
Physical dimensions and material properties of a typical repair

Young|s Poisson|s Thickness
Layer modulus "GPa# ratio "mm#

Plate 60 9[2 2[9
Reinforcement 196 9[2 0[9
Adhesive 0[78 9[22 9[1
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Fig[ 5[ Comparison of models based on Kirchho}!Poisson plate theory and the Reissner|s plate theory[

remains considerably higher than that predicted using Reissner|s plate theory[ The breakdown of
the relationship "08# is due to the coupling between the tensile and bending springs sprung between
crack faces\ resulting in the inapplicability of the path!independent integral used in deriving "08#[
Therefore in the following analyses solutions based on Kirchho}ÐPoisson plate theory will not be
discussed further[

The numerical results obtained from the formulation based on Reissner|s plate theory\ i[e[\ eqn
"39#\ are plotted in Fig[ 6\ together with the results of a three!dimensional _nite element analysis
"Callinan et al[\ 0886#[ Considering the approximate nature of the crack bridging model and the
_nite element method\ the correlation between the predictions and the _nite element results is
reasonably good[ Nevertheless further work is desirable to clarify the discrepancies in the short
crack regime[

6[1[ Remote tension ] `eometrically non!linear analysis

The superposition principle used in Section 1 to reduce the problem of a one!sided repair
subjected to remote tension to a simple perturbation problem where the crack is internally press!
urised is\ strictly speaking\ not valid should the structure undergo geometrically nonlinear defor!
mation[ However\ an upper bound solution can be obtained by a hybrid method\ in which the
prospective stress distribution is solved using geometrically nonlinear elasticity theory\ but the
spring constants derived from a linear analysis are retained in eqns "12# and "29#[ A detailed proof
is provided in Appendix E[

From eqns "7# and "8# the prospective and maximum bending stresses are\
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Fig[ 6[ Theoretical predictions and _nite element results for a typical one!sided repair assuming geometrically linear!
deformation[

sm �
0

0¦S
s� "35#

sb � 9 "36#

With this stress distribution\ the coupled eqns "39# are then solved numerically and the results are
plotted in Fig[ 7[ When compared with the geometrically linear analysis\ both the membrane and
the bending stress intensity factors have reduced by almost a factor of two\ suggesting a strong
in~uence of the geometrically non!linear deformation on the repair e.ciency of one!sided repairs[
Nevertheless\ the results shown in Fig[ 7 also reveal that the repair e.ciency of a one!sided repair
is still much lower than the equivalent two!sided repairs\ with the mean and maximum stress
intensity factors being about twice and four times those of equivalent two!sided repairs for the
geometry being considered[ It is interesting to note that although the prospective maximum bending
stress is zero\ there is still a signi_cant bending stress intensity factor\ resulting from the coupling
between the tension and bending springs[

6[2[ Remote bendin`

Recently attempts have been made to apply the bonded repair technique to repair fatigue damage
caused by acoustic vibration[ Due to the pressure waves caused by engine and:or aerodynamic
e}ects\ aircraft skin structures may experience a high degree of acoustic fatigue[ For example\ the
external surface of the lower nacelle skin of the F:A!07 aircraft has been found to experience
acoustically induced cracking "Brewer\ 0883#[ Cracking generally occurs along the longer side of
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Fig[ 7[ In~uence of geometrically non!linear deformation on the repair e.ciency[

a panel where the bending stresses due to the out!of!plane vibrations are the maximum[ The main
feature in this case is that the cracked plate is subjected to mainly out!of!plane bending with little
in!plane loading\ as illustrated in Fig[ 8[

Application of bonded composite repairs in this case will have two e}ects ^ _rstly to reduce the
panel vibration response due to the increase in sti}ness and secondly to restrain the crack opening
thus reducing crack driving force[ In the present work we will investigate only the reduction in the
crack driving force as a result of crack bridging[ According to eqns "5# and "6#\ the membrane
stress and the maximum bending stress are

sm �
t1P
5It

s�
b "37#

sb �
t2P

01It

s�
b "38#

Fig[ 8[ Bonded repair subjected to acoustic fatigue loading[
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Fig[ 09[ Repair e.ciency of one!sided repairs subjected to acoustic loading[

where s�
b represents the maximum bending stress that the panel experiences before the application

of a bonded patch[ With this stress distribution\ the coupled eqns "39# are then solved numerically
and the results are plotted in Fig[ 09\ indicating that the one!sided repair is also e}ective in the
case of cracked plates being subjected to out!of!plane bending[ It should be pointed out that crack
closure on the compressive side\ especially when the pressure depicted in Fig[ 8 is reversed\ is not
addressed in the present work ^ this will be the subject of a separate article[

7[ Summary and conclusions

A crack bridging model has been presented for analysing the tensile stretching and bending of
a cracked plate\ which is repaired on one side\ subjected to tension and bending[ The repaired
structure is modelled as a plate containing a through thickness crack\ bridged by tension and
bending springs\ whose sti}ness constants are determined from a one!dimensional analysis of
single strap joint[ The results show that Kirchho}ÐPoisson plate theory would considerably
overestimate the bending stress intensity factor\ while the formulation based Reissner|s plate theory
provides a reasonably good estimate of both the membrane and bending stress intensity factors\
when compared with results from a three!dimensional _nite element analysis[ To account for the
bene_cial e}ect of geometrically nonlinear deformation on the repair e.cient of one!sided repairs\
a hybrid method is proposed\ within the framework of a two!stage analysis[ First\ the prospective
stresses along the crack path are determined using geometrically nonlinear elasticity theory[
Secondly\ the perturbation problem is solved within the framework of geometrically linear elas!
ticity[ The results show that a one!sided repair is still much less e.cient in reducing the stress
intensity factor than an equivalent two!sided repair[
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Appendix A ] Derivation of the spring compliance matrix

The governing equations for the adhesive shear and peel strains\ which are assumed to be
constant through the adhesive thickness\ are\ respectively\

d2g"A#

dy2
−b1

s

dg"A#

dy
� 9 "A0#

d3o"A#

dy3
−3k3o"A# � 9 "A1#

where

b1
s �

3mA

tA $
0

E?PtP
¦

0
E?RTR%0 3b1 "A2#

k3 �
E?A
3tA $

0
DP

¦
0

DR% "A3#

where mA and tA represent the shear modulus and the thickness of the adhesive layer\ DP and DR

refer to the bending sti}ness of the plate and reinforcement\ DP\R � E?P\Rt2P\R:01\ and
E?A � 1mA:"0−n# is the Young|s modulus of the adhesive under plane strain condition[ The
di}erential equation "A# has the following solution in the domain y × 9\

g"A# � g"A#
max e−bsy "A4#

where g"A#
max represents the maximum shear strain at y � 9[ Similarly the relevant solution for the

adhesive peel stress in the case of semi!in_nite overlap in the domain y × 9 is\

o"A# �"A cos ky¦B sin ky# e−ky "A5#

The three unknowns\ g"A#
max and constants A and B need to be determined from the appropriate

boundary conditions[
The boundary condition for the shear strain is\

dg"A#

dy by�9

�
oR"z � tP:1¦tA#−oP"z � tP:1#

tA

�
0
tA $

0
E?RtR

¦
0

E?PtP
¦

2"tR¦tP#

E?Rt1R %N9¦
5
tA $

0

E?Rt1P
−

0

E?Pt
1
R%M9 "A6#

The relevant boundary conditions for the adhesive peel strain at y � 9 are\

d1o"A#

dy1 by�9

�
0
tA

d1"wR−wP#

dy1
�

0
ta 0

MR"y � 9#
DR

−
MP"y � 9#

DP 1
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�
0

tADR

tR¦tP
1

N9¦
0

tADR $0¦
Dr

DP%M9 "A7#

and

d2o"A#

dy2 by�9

�
0
tA

d2"wR−wP#

dy2
�

0
tA 0

VR¦t"A#
maxtR:1

DR

−
VP¦t"A#

maxtP:1
DP 1

�
mA

1tA 0
tR
DR

−
tP
DP1 g"A#

max "A8#

where the conditions that the shear force VP and VR are both zero at y � 9 have been used[
From condition "A6# one obtains

g"A#
max � −

0
1btA $

0
E?RtR

¦
0

E?PtP
¦

2"tR¦tP#

E?Rt1R %N9¦
5

1btA $
0

E?Rt1R
−

0

E?Pt
1
P%M9 "A09#

and referring to eqns "A7# and "A8# we have\

−1k1B �
0

tADR

tR¦tP
1

N9¦
0

tADR 00¦
DR

DP1M9 "A00#

1k2"A¦B# �
mA

1tA 0
TR

DR

−
tP
DP1 g"A#

max "A01#

thus\

k"A−B# �
mAtP
3k1tA 0

tR
DR

−
tP
DP1 g"A#

max¦
tR¦tP
1ktADR

N9¦
0

ktADR 00¦
Dr

DP1M9 "A02#

Denote the rotation of the plate at y � 9 as u9\ since 1wR:1y=y�9 � 9 because of symmetry\ and
o"A# �"wR−wP#:tA\ we have\ by de_nition\

u9 �
1wP

1y by�9

�
1"wP−wR#

1y by�9

� −tA
1o"A#

1y by�9

� ktA"A−B#

� 6
tP¦tR
1kDR

−
mA

7k1btA $
tR
DR

−
tP
DP% $

0
E?RtR

¦
0

E?PtP
¦

tR"tR¦tP#
3DR %7N9

¦6
0

kDR 00¦
DR

DP1−
mA

05k1btA $
tR
DR

−
tP
DP%

1

7M9 "A03#

The opening displacement at the mid!surface of the plate is\
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u9 � −g"A#
maxtA¦u9tP:1

� 6
tP"tR¦tP#

3kDR

¦ $
0

E?RtR
¦

0
E?PtP

¦
tR"tR¦tP#

3DR % $
0
1b

−
mAtP

05k1btA 0
tR
DR

−
tP
DP1%7N9

¦6
tP

1kDR 00¦
DR

DP1¦$
tr

1DR

−
tP

1DP% $
0
1b

−
mAtP

05k1btA 0
tR
DR

−
tP
DP1%7M9 "A04#

It is now possible to express the crack opening displacement and crack face rotation in terms of
the membrane force and the bending moment in a matrix formulation\

6
u9

u97� $
c00 c01

c10 c11% 6
N9

M97 "A05#

where

c00 �
tP"tR¦tR#

3kDR

¦ $
0

E?RtR
¦

0
E?PtP

¦
tR"tR¦tP#

3DR % $
0
1b

−
mAtP

05k1btA 0
tR
DR

−
tP
DP1%

c01 �
tP

1kDr 00¦
DR

DP1¦0
tR

1DR

−
tP

1DP1 0
0
1b

−
mAtP

05k1btA 0
tR
DR

−
tP
DP11

c10 �
tR¦tP
1kDR

−
mA

7k1btA 0
tR
DR

−
tP
DP1 0

0
E?RtR

¦
0

E?PtP
¦

tR"tP¦tR#
3DR 1

c11 �
0

kDR 00¦
DR

DP1−
mA

05k1btA 0
tR
DR

−
tP
DP1

1

It is evident that the cross terms\ c01 and c10\ are non!zero\ indicative of the coupling between in!
plane and out!of!plane deformation[ According to the Maxwell|s reciprocal relation\ the matrix C
should be symmetric\ i[e[\ c01 � c10[ However\ due to the approximate nature of the plate theory\
the resulting matrix is not exactly symmetric\ but the deviation from symmetry is small[

Appendix B ] Expansion of Fredholm kernel near singularity

Joseph and Erdogan "0876# showed that L"z# is a Fredholm kernel but an error occurred in the
expansion of the modi_ed Bessel function of the second kind\ hence resulting in an incorrect
asymptotic expansion for small z[ Correct expressions are presented below[

The small s expansion for the Bessel functions are\

K9"s# � −ln"s:1#−ge−"s:1#1 ln"s:1#¦O"s1# "B0#

K1"s# �
1

s1
−

0
1

¦0ln 1−ln s−ge¦
2
31

s1

7
¦0 ln 1−ln s−ge¦

06
011

s3

85
¦O"s5# "B1#
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where the Euler|s constant\ ge � 9[4661046 [ [ [ [ Substitution of these expansions into eqn "18b#
leads to the following behavior for L"s#\

lim
z:9

L"s# ¼ ln"s:1#¦"ge¦0:3#¦"s:1#1 ln"s:1#¦= = = "B2#

It is clear that the kernel L"s# has only an integrable logarithm singularity[

Appendix C ] Derivation of gij

With W"x# � z0−x1 and Ui"x# � sin ð"i¦0# cos−0"x#Ł:sin"cos−0 x#\ we have

gij � g
0

−0

W"x#W"x#Ui"x#Uj"x# dx

� g
p

9

sin"u# sin ð"i¦0#uŁ sin ð" j¦0#uŁ du

�
3"i¦0#" j¦0#

"i¦j¦2#"i¦j¦0#"i−j¦0#" j−i¦0#
"C0#

where the following identity has been used "Gradshteyn and Ryzhik\ 0883#

Ð sin"ax# sin"bx# sin"cx# dx

� −
0
3 $

cos"a−b¦c#x
a−b¦c

¦
cos"b¦c−a#x

b¦c−a
¦

cos"a¦b−c#x
a¦b−c

−
cos"a¦b¦c#x

a¦b¦c % "C1#

Appendix D ] Derivation of aij

aij � g
0

−0 g
0

−0

W"r#W"h# ln =r−h=Ui"h#Uj"r# dh dr

� g
0

−0

Vi"r#W"r#Uj"r# dr "D0#

where

Vi"r# � g
0

−0

W"h# ln =r−h=Ui"h# dh 0

F

G

j

J

G

f

−
p

1 $−r1¦
0
1

¦ln 1% i � 9

−
p

1 $
Ti"r#

i
−

Ti¦1

i¦1% i − 0

"D1#

therefore\
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aij �

F

G

G

G

G

G

G

g

G

G

G

G

G

G

f

−
p1

05
ð0¦3 ln 1Ł i� j� 0

−
p1

7 0
0

j−0
¦

0
j¦01 i� j× 0

p1

7" j−0#
j� i¦1

p1

7" j¦0#
j� i−1

9 otherwise

"D2#

where the following results have been used

g
0

−0

Ti"x#W"x#Uj"x# dx � 8
p:3 i � j

−p:3 i � j¦1

9 otherwise

"D3#

which can be proved if one uses the following identity "Gradshteyn and Ryzhik\ 0883#

Ð cos"ax# sin"bx# sin"cx# dx

�
0
3 $

sin"a¦b−c#
a¦b−c

¦
sin"a¦c−b#

a¦c−b
−

sin"a¦b¦c#
a¦b¦c

¦
sin"b¦c−a#

b¦c−a % "D4#

Appendix E ] A hybrid method for upper bound solution

Here the hybrid method refers a two!stage analysis method for solving a one!sided repair
subjected to remote tension\ in which the stage one is solved within the framework of geometrically
nonlinear elasticity while the stage two "perturbation problem# is solved assuming the repaired
region deforms geometrically linearly[ It will be shown below that the proposed hybrid method
will "0# correctly predict the membrane force carried by the reinforcement and "1# provide an
upper!bound to the bending moment in the reinforcement\ hence proving that the hybrid method
will always provide a conservative prediction of the stress intensity factors[

Referring to Fig[ 3"c#\ in the case of geometrically nonlinear deformation\ the membrane force
in the patch just above the crack is\

Npatch 0 N� "E0#

which results directly from an equilibrium consideration[ In other words\ the net force that the
reinforcement is carrying is equal to N�[

In the limiting case of _nite overlap\ geometrically nonlinear deformation of the uncracked
structure depicted in Fig[ 3"b# will lead the neutral plane of the reinforced section to align with the
load path\ as the bending moment at x � 9 must be zero to maintain equilibrium[ This implies
that the vertical movement of the reinforced region is equal to −z¹ "bar#[ For the cracked geometry
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shown in Fig[ 3"c#\ the loss of local bending sti}ness at x � 9 would obviously cause the reinforced
region to move further downward[ Let us denote this extra displacement as D "³9#[ The bending
moment in the patch just above the crack is now given by

Mpatch � 0
tP¦tR

1
−z¹¦D1N� � 0

tP¦tR
1

0
0¦S

¦D1N� "E1#

where eqn "2# has been used[
Now if we follow the hybrid method\ referring to Fig[ 4"a# where N9 and M9 being given by

eqns "5# and "6#\ the membrane force in the patch determined via the hybrid method\ N�patch\ is\

N�patch � N0¦N9 0 N� "E2#

where N0 represents the net force in the reinforcement before the appearance of the crack\ equal
to

g
t
P
:1¦tR

tP:1

s9"z# dz[

Therefore\ the membrane force as determined by the hybrid method is exactly equal to the actual
force carried by the reinforcement[

The bending moment determined by the hybrid method\ M�patch\ is

M�patch �
tP¦tR

1
N9 �

tP¦tR
1

N�

0¦S
"E3#

Comparison with eqn "E1# it is easily seen that\ because D ³ 9\ the hybrid method always predicts
a higher than actual bending moment\ i[e[\ M�patch − Mpatch[ Therefore\ the proposed hybrid method
implies that the springs would carry a higher than actual bending moment\ hence it ought to
provide an upper!bound to the stress intensity factors of a one!sided repaired crack undergoing
geometrically nonlinear deformation[
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